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Abstract

A classical problem in hydrodynamics originally posed by Gilbarg has been recently reduced
to that of solving a solitonic Heisenberg spin equation subject to a geometric constraint. Here, this
reformulation is shown to lead to a class of solutions of the Gilbarg problem corresponding to travelling
wave solutions of a system derived by Da Rios in 1906.
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1. Introduction

A long-standing problem in hydrodynamics posed by Gilbfgand subsequently
investigated by Prinj2], Howard[3], Wassermarj4] and Marris[5] has recently been
shown to be encapsulated in a nonlinear system consisting of an integrable Heisenberg spin
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equation subject to a geometric constr@nt]. This Heisenberg spin equation is equivalent

to the celebrated nonlinear Sddinger (NLS) equation which, in turn, is a consequence
of the classical Da Rios system which was originally set down in 1906 in connection with
the spatial evolution of an isolated vortex filament in an unbounded inviscid li&lid

The hydrodynamics problem treatedin-7], in fact, represents a generalisation of a well-
known problem posed and resolved by Haf8§l An alternative demonstration of what has
come to be known as Hamel’s theorem has been givgbOhvia a geometric formalism
originally introduced by Marris and Passmdr ] in a kinematic study of hydrodynamics.
This formalism has been exploited in magnetohydrodynaifiizs and recently within

the context of the geometry of soliton thedy3,14] Here, it is used to address what
we term the Gilbarg problem which seeks to delimit steady hydrodynamic motions for
which the speed of the fluid flow is constant along streamlines. In view of the continuity
equation, this condition is equivalent to the purely geometric constraimt-di0, where

t is the unit tangent to a generic streamline. It is established that for such motions, two
important geometric constraints must apply on the abnormglity ¢ - curl¢. Remarkably,

it is demonstrated that these constraints encode the ‘travelling wave’ symmetry reduction
of the Da Rios system if2 is assumed to be constant on the constant pressure surfaces.
This result encapsulates Hamel's theorem correspondifig£o0. The motions of Gilbarg

type which are compatible with the travelling wave reduction of the Da Rios system have
recently been delimited ifL5].

It is of interest to remark that the geometric concept of abnormality and, indeed, con-
stant abnormality plays an important role in the advance made by M&6j$7]in his
investigation of Ericksen’s problem to determine all deformations that can be sustained by
a perfectly elastic, isotropic, incompressible body subject only to surface tra¢ti8hs
Marris’ contribution to the study of Ericksen’s problem has recently been discussed in a
survey on universal solutions in elasticity by Saccom#t@ji. Universal states in anti-plane
shear and connections with hydrodynamics have also been discussed by Ki2@jNles

An analogue of Gilbarg's problem may also be formulated in the context of magne-
tohydrodynamics. In that case, it has been shown that the integrable Pohlmeyer—Lund—
Regge model subject to a volume-preserving constraint arises as an exact reduction of the
equilibrium equationf21]. Moreover, the above-mentioned Heisenberg spin connection is
retrieved in the hydrodynamic or magnetohydrostatic limit.

2. The class of hydrodynamic motions
Here, we consider the classical system of steady hydrodynamics
divg =0, plg-V)g+Vp=0, (2.1)

wheregq is the fluid velocity ang, p are the pressure and constant density, respectively. In
this context, the Gilbarg problefi] may be formulated as follows:

Under what circumstances is a flow uniquely determined by its streamline pattern

In [2], Prim established that “any flow is unique unless it has a constant velocity magni-
tude along each individual streamline.” Thus, up to a trivial scaling of the velocity magnitude
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q = |q|, the flow may be reconstructed from its streamline pattern unless
q-Vg=0. (2.2)

Indeed, if the latter condition holds then there exists a multiplicity of flows which exhibit
the same streamline pattern since the syst2rh), (2.2)is seen to be invariant under
(p,q) — (P(p), v P'(P) @)

Gilbarg[1] and Prim[2] resolved Gilbarg’s problem for planar and axisymmetric flows,
respectively and showed that the streamlines are necessarily concentric circles or straight
lines. Wassermgd] reformulated the governing equationsin the language oftensor calculus
and reduced the rotationally symmetric case to a pair of ordinary differential equations. The
latter has been recently shown to be solvable in terms of complete elliptic intEis#18].

In particular, there exist configurations of nested constant pressure tori spanned by the
geodesic streamlines. However, Pifi2h states that for general spatial flows, the geometric
implications of his theorem are unknown. Mari#§ derived necessary constraints on the
geometry of the admissible flows. These ‘constant speed flows’ were the subject of the thesis
of Howard[3]. Their analysis may be extended to Prim gddeand, as demonstrated below,

to compressible fluids with arbitrary state law.[B], a remarkable link was established
between the hydrodynamic systétl), (2.2)and the integrable Heisenberg spin equation.

It has subsequently been shof¥hthat the hydrodynamics system in question is completely
encapsulated in the Heisenberg spin equation subject to a geometric constraint. The result
may be summarised as follows.

Theorem 1. Steady hydrodynamic motions wigh Vg = 0 are governed by the purely
geometric system

ot 3t

— =t X —,

b ds2
whereg = gt while s denotes arc length along the streamlines and b parametrises their or-
thogonal trajectories on the constant pressure surfaces. The streamlines and the orthogonal
trajectories constitute geodesics and parallels respectively thereon. The velacitithe
pressure p are determined by integration of the compatible system

dive =0, (2.3)

8q Sing 1 .

— =0, —— = ——div(kb),

Ss &b 2k (icb)

5p ép 2 op

= =0, = = ., — =0, 2.4

5s P YA (2:4)
where

1) ) )

—=tV, —=nV, —=bV (2.5)

oS on b

designate the directional derivatives, in turn, in the tangential, principal normal and bi-
normal directions to the streamlines

Itis with the Heisenberg spin equati¢ 3); subject to the constraifi2.3), that we shall
be concerned in the present paper.
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The above theorem and the subsequent analysis apply ‘mutatis mutandis’ to steady
motions of an inviscid and thermally nonconducting compressible fluid. In that context, the
governing equations are

div (ov) = 0, p(v-Vv+Vp=0, v-Vnp=0 (2.6)
augmented by an equation of state of the form

o = p(p,n), (2.7)

whereinv is the steady fluid velocity whilg, p andn denote the pressure, density and
specific entropy respectively. If we assume that the streamlines lie on the constant pressure
surfaces, that is

v-Vp=0, (2.8)
then the equation of motiof2.6), the equation of stat@2.7) and (2.6 imply that

v-Vv=0, v-Vp=0, (2.9
wherev = vt. Accordingly, on introduction of the canonical variable

qg=qt=./pv, (2.10)
the governing equations reduce to the sys{rh),_1, (2.2), that is

divg = 0, (¢g-V)g+Vp=0, q-Vqg=0, (2.11)

along with the isentropic condition
q-Vn=0. (2.12)

It is important to note that the particular motions considered here do not impose any con-
straints on the equation of state.

3. Geometric preliminaries
Here, the orthonormal basfg n, b} consisting of the unit tangent principal normak

and binormab to the streamlines is adopted. The directional derivatives along these unit
vectors are defined bi2.5). Following[23], we introduce the notation

ot St
ens =n- 51 ebs =b- g (31)
and
2 =t-curle, 2, =n-curln, 2, = b - curlb. (3.2

It may be established that
div e = 6,5 + Ops, 2 =02-2, 21, curlt = 2t + «b. (3.3)

The latter relation was originally obtained by Masdf¥4] and was later rediscovered
independently by Emd@5] and Bjgrguni23]. Application of the identity curl gra¢ = 0
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to a test functiop now produces the commutator relations

82 82 ) ) )
- =022 4 divb— — (k +diva)—,

snob  sbon 55 TAVEL —letdvm)

2 8 _ 8 .
sbds  ossb . "an T sy

82 §2 B ) )
L NN Wik 3.4
ssom  onds . os em Psb (3.4)

The directional derivative.5) of the orthonormal triadlt, n, b} may be shown to be given
by [26]

t 0 « 0 t
% n|l=|-«0r1 n|l,
b 0 —70 b
t 0 Ops S2p+ 1 t
% n|= —B,5 0 —divd n|,
b —(2,+1)divb O b
s 0 —(£2, + 1) Ops t
A nl|l=|2,+< 0 Kk +dive n|. (3.5)
b —0ps —(x +divn) 0 b

On use of the commutator relatior{8.4), the compatibility of the above system is
seen to impose the following set of nine conditions on the eight geometric quantities
K, T, $2, §2,, diva, divb, 6,; andby, [26]:
36ns
3b

1) . .
+ E(t + 2,) = (k + dive)(2 — 282, — 2t) + div b (Ops — O,5) + 2k,

30ps
én

1) . .
E(T + 2, —2)+ = (k + divnr) (6,5 — Ops) + divbh (2 — 282, — 21),

5 . ) . .
5 AVB+ —(c+divi) = (v + )7 + 2 — 2) = Onsbps — 782 — (div b)?
n
— (k 4 dive)?
1) Sk
—(t+ 2,) + — = —8240p5 — (2T + $24)0ps,
8s &b

86ps

= —02 + k(i + diva) — 2,(t + 2, — 2) + t(t + 24),

5 . 5 . .
e+ dlivm) - 8—2 — 2, divh — 0p5(2« + divn),

Sk 80p
on 8s

= k2 + 02 + (r + 2,)Br + 2,) — 221 + 2,,),
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1) .
g(t + 2p — 2) = —0,5(2, — 2) + kdivh + Ops(—27 — 2, + £2),

g—t + ;divb = k(24 — 2) — Ops diVh + (k + divn)(—2r — 2, + 2).  (3.6)
n S

4. Intrinsic decomposition of the hydrodynamic system

The hydrodynamic systeli2.1), on intrinsic decomposition, yields

Sp 2 5 op 2 Sp
— = vV — = - -~ =
. =rq dive, o gk, 5

Application of the commutator relatior{8.4) shows that the compatibility conditions on
the pressure distribution yield

1)
M 4 gdive =0, (4.1)
ds

§In . ) 5 . .
2 a d|vt=——K + Opsk — — divet + 2« dive,
on oS on

§in 8
2( 2 ) dive = k2, — > dive,
5b 5b

sl . .

% (%) = —div (xb) — 2divt. 4.2)
Under the constrain®.2), namely

1)

%9 _ 0, 4.3)

88
the systen{4.1);, (4.2)reduces to the purely geometric set of equations

. 1)
divei=0, 2, =0, 8—K — Opekc (4.4)
N

together with

8q q .

= __1 4.

" o div (xb) (4.5)

provided thak # 0. Importantly, the variation of the spegih the direction of the principal
normal remains arbitrary. Accordingly, as discusse8éation 2 constant speed flows are
not completely determined by their streamline geometry.

On application of the commutator relati@@4), the compatibility of the relationgl.3)
and (4.5)is readily shown to lead to the requirement

S div (xb) = 0. (4.6)
s

However, the latter is a consequence of the compatibility condi{i®@63 Indeed, elimina-
tion of §7/6n between(3.6) and (3.6) results in

8
5 v + div (6,:) = 0. 4.7)
N
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Insertion of6,s as given by(4.4); and use of the commutator relati¢®@4), then produce
(4.6).

5. Constraints on the abnormality £2

The geometric relationg3.6) and (4.4)encapsulate two important constraints on the
abnormalitys2. Firstly, elimination ofét/§s from (3.6), g leads to

802
<o+ @divi 4 div(cb) =0, (5.1)
N

which is nothing but the identity div curl= 0, where curt is given by the Masotti-Emde—
Bjgrgum relation(3.3%. In view of (4.4); and (4.6) the relation(5.1) implies that

820
— =0. 5.2
552 (5.2)
Secondly, addition of the relatior§3.6) ¢ produces
682 66, 1) ) . .
28I 4 2 (k4 diva) + 3ps(ic + diva) + Ok + (27 — 2)divb. (5.3)
&b on 8s
The commutator relatio(8.4); yields
80ps  8%Ink  82Ink Sk sInk sk
—= = = — Opy—— + 2p—— 4
on = omos T asen ey ey T TG (54)

wherein, in view 0of(3.6) 7, the directional derivative&/5b anddx/3n may be replaced
by
Sk 5t Sk 80ps 2, 22 2
— = —— — 216, — = —— 0 3¢ — 2182. 55
s 8 T 5y T T oT e (®-5)

Moreover, on solving3.6) and (3.63 for « + divn and divb, respectively, one obtains

, 1 (86 _ 176t 682
K+dIVn=—< s +9§S—12>, leb:—(—T——+210bs>. (5.6)
K

88 Kk \ 8s 3s
Reduction of(5.3) by means 0f5.4)—(5.6)now yields
82 8 (., o o5 5 22
ngg(&c + 46, +« —41’[24—7 . (5.7)

6. The geometry of the constant pressure surfaces: a constrained Da Rios system

The equation of motio2.1) together with the constraii.2) shows that
Vp = —pgkn, (6.1)

whence the principal normal to the streamlines is parallel to the normal to the constant
pressure surfaces. Accordingly, the streamlines, namelg-tines, are geodesics on the
constant pressure surfaces while their orthogonal trajectorie$;lthes, are necessarily
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parallels thereon. Indeed, the vanishing abnormality condifdgrprovides a necessary
and sufficient condition for surfaces to exist which contain the trajectories afahdb
vector fields. If these-lines andb-lines are now taken as parametric curves on the constant
pressure surfaces then their metric adopts the geodesic form

[ = ds® + h? db?, (6.2)

where

5§ 8 9 b
Vy—const = f— + bo = t— 4 — = 6.3
p=const = L+ O = e (6.3)

and
olnh
Ops = ——. (6.4)
os

The relationg3.6) 5 ¢ are nothing but the GauR—Mainardi—Codazzi equations for the con-
stant pressure surfaces and become

O 19, , it 0 . oh

— =———(h"7), —=—[h div —,

b= Rt ap = sl Fdivm] e

82h .

57 = [k(x + divn) + t2]h. (6.5)
A)

However, the relatio4.4); shows that
h = Ak, (6.6)

wheredar /és = 0. On transforming.b — b, the directional derivatives i(6.3) become
s_9o 5 _19
8 os’ 8b kb

so that, on elimination of + div n, Egs. (5.2), (5.7) and (6.8)ye seen to represent a system

of two-dimensional differential equations which prevail on any individual constant pressure
surface. Remarkably, the p&6.5) » constitutes the celebrated Da Rios sysf8i27,28]*

This gives rise to the following key observation.

(6.7)

Theorem 2. In steady hydrodynamic motions with/8s = 0, the curvature and torsion
of the streamlines obey the Da Rios system

re e It o d (1% K,
—_— _‘L’ s

2% X, o _2 (22X
toK b 0s \k 9s2 = 2

— = 6.8
ob os os (6.8)

1 L.S. Da Rios engaged in a long-standing investigation of the motion of three-dimensional vortex filaments
starting in 1906 under the guidance of T. Levi-Civita at the University of Padua. He originated the now celebrated
localised induction approximation (LIA) to be re-discovered more than 50 years later. An excellent account of the
contributions of Da Rios and Levi-Civita to the study of vortex dynamics has been given by[R#ica
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where s denotes arc length along the streamlines and b parametrises their orthogonal
trajectories on the constant pressure surfaces. The abnorm@lity subject to the two
necessary constrain{s.2) and(5.7), that is

P22 a2 9 1k\? 22
“C-0, = |4f4a(== 2 2+ —|. 6.9
952 ob as[tJr <Kas) T +2} (6:9)

The Da Rios system is equivalent to the Heisenberg spin equati®h. In general, the two
conditions(6.9)on the abnormality2 are not compatible and impose constraints on the Da
Rios systen(6.8). It is with these constraints that we shall be concerned in the remainder
of this paper.

7. A class of solutions of the Gilbarg problem

Hamel[9], in 1937, undertook a detailed study of irrotational constant speed flows. Thus,
he was concerned with the existence of solutions of the hydrodynamic s¢&tem(2.2)
subject to the additional constraint

curlg = 0. (7.1)

Since, in this case2 = 0 and divt = 0, there exist minimal surfacg30] which are or-
thogonal to the streamlines. Hamel employed the classical Weierstrass repres¢Btation

of minimal surfaces to show that the streamlines of such flows can only be straight lines or
helices mounted on concentric circular cylinders[1], Marris presented an alternative
demonstration of Hamel's theorem. This involved establishing that the geometric systems
(3.6), (4.4)subject to(7.1) are compatible if and only # = 0 ord«/8s = §t/8s = 0. Prim

[32] showed that the admissible streamline geometries of constant speed flows which are
complex-lamellar, that is

2=0, (7.2)

coincide with those of irrotational constant speed flows. Hamel's theorem may therefore
be called upon to deduce that the streamlines of complex-lamellar constant speed flows are
likewise either straight lines or circular helices.

Here, Prim’s (and ‘a fortiori’ Hamel’s) condition is relaxed. It is demanded that the
abnormalitys2 be constant on individual constant pressure surfaces. This is motivated by
the fact that, even though the geometric meaning of the condi@d®) is evident, from
the point of Lie point symmetries, it is not an invariant condition. In this connection, it is
noted that, in principle, one should be able to bring the overdetermined s{&@&m(6.9)
into involutive form in the sense of CartdB3] and Kahler[34] by adding all necessary
compatibility conditions. However, it turns out that, in the case of a generic abnormality, the
practical implementation of this statement by means of a computer algebra package such
asrir [35] appears to be obstructed by the high level of computational complexity.

The following theorem constitutes the key result of the present paper.
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Theorem 3. In steady hydrodynamic motions with
1) 382 52
_q = 01 -~ = 07 . — 09
és 8s b

the curvaturec and torsiont of the streamlines are necessarityavelling wave solutions

(7.3)

k = k(s + cb), T = 1t(s + cb) (7.4)

of the Da Rios systeli®.8). The solution of the constrained Da Rios sys{ém), (6.9)is
given by

2
K= /p, I=E+a+€, (7.5)

wherec = —£2 — 2« and p is the elliptic function defined by
p?+ p> — 4y + 4(ap + B)* = 0. (7.6)

Here the quantitiesw, 8, y and § are independent of s and b. The streamlines on any
individual constant pressure surface are identical up to Euclidean motions. The latter are
generated by the compatible constraint

— =c—+cxt (7.7)

on the Heisenberg spin equati@@.3);, where the vector is likewise constant on any
individual constant pressure surface. The streamlines have the shéhe aentreline gf
symmetric elastic rods

Proof. The Gilbarg problem of delimiting hydrodynamic motions subject to the constraint
(2.2) has been seen to reduce to the problem of solving the solitonic Da Rios system

2
Kp = —2KsT — KT, Tp = (% + £ T2> (7.8)
s

subjecttothe constraintdiv= 0. Here, subscripts designate partial derivatives. Our starting
point is the observation that the Da Rios system and the conditions

2 22
2,=0, Q= [4z2 +4 (K—) P2 A2+ —} (7.9)
K 2 |
on the abnormality of the vector field admit common Lie point symmetries. Thus, the
important invarianc§39]
op — 0p — 2A0s, T—>T+A (7.10)

of the Da Rios syster(i.8) which is known to inject the constant ‘spectral’ parameter
into the associated Lax representation extends to the sygtéif it is supplemented by

2 Q2+ 2. (7.11)
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Hence, if$2 is constant on individual constant pressure surfaces then it may be removed by
means of the above symmetry and the constraint on the Da Rios system becomes

2
42 4 4 (%) + 12 = dy(b), (7.12)

wherey constitutes an arbitrary function of integration. However, it is emphasised that once
a solution of the Da Rios system and the constréirit2) has been found? must be re-
trieved since the above invariance does not necessarily extend to the complete hydrodynamic
system. In particulag2 may depend on the pressyre

The casa; = O: If the curvaturec is constant along the streamlines then the constraint
(7.12)implies that the torsion is likewise independent &f Accordingly, the streamlines
constitute helices and the Da Rios equatiph8) show thatc andt are constant on each
individual constant pressure surface. It is well-knddhthat these helices are mounted on
concentric circular cylinders.

The case = 0: If the streamlines are planar then the Da Rios equdiid); implies
that« is independent a. Accordingly, y is constant and the remaining Da Rios equation
(7.8) is satisfied modulo the constraifi.12) which may be solved in terms of elliptic
functions.

The caser = const: Here, we investigate under what circumstances the consfrali®)
is compatible with the Da Rios systemyifis independent d. In terms of

o = K2, (7.13)
the constrain{7.12)may be written as
o 2 > 13 1,
_2 — _-3_z 7.14
iU A A (7.14)

and the Da Rios equations become

1 pss 1 102 Y 2
=2 =|=2E =42 7.15
=200 T (2 T R (7.15)
Insertion ofr as given by(7.14) into (7.15) yields
op = —205%, (7.16)

while evaluation of7.15) produces

(ﬁ) —o. (7.17)
Ps/ g

In the derivation of the latter, derivatives pfin binormal direction have been removed by
means of7.16) Accordingly,oc andp are related by

o =alb)p+ (D) (7.18)
so that(7.16)becomes

Py = —2005. (7.19)
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The latter is compatible witfi7.14), that is

pZ+ p° — dyp? + Aep + P)? = 0, (7.20)
if and only if
ap = ,3}, =0. (7.21)

Thus, it has been demonstrated that the conditienconst leads to travelling wave solu-
tions of the Da Rios system which may be expressed in terms of elliptic functions by virtue
of (7.20)

The casey # const: Here, it will be shown that the constrai(it.12)is incompatible
with the Da Rios system if;, = 0. As in the preceding, we introduce the quantipesnd
o so that the relation§7.13)—(7.16)are still valid. However, evaluation of the Da Rios
equation(7.15)% now yields

vo + (4y — p) (;—) =0. (7.22)

S B

Subsequent integration produces
4y = )2 0+ v = 50). (7.23)

wheres constitutes a function of integration. Accordingly, the derivatipes, ando; may
be expressed in terms pf o (along withy, § ands) by means of7.14), (7.16) and (7.23)
Hence, the compatibility conditiopy, = pps delivers

2yp0 o+ vps)(o + yps — 28 + 82
o = 2T ps( vos)(o + v - ) (7.24)
4y —p (4y — p)
so that the compatibility conditioty, = o, leads to
4ypo + (Yobs — 8)(0 — 4y) + 8yp(vps — 8) = 0. (7.25)

In order for a solution to exist, this must be an admissible constraint on the sfjatetp,
(7.16), (7.23), (7.24)On differentiation with respect teand elimination ofr; ando by
means 0{7.23) and (7.25)respectively, we are led to the necessary condition

_ 4y — 0)lywn(4y — p) — 8Y;]

S ’ 726
° s — ) (7:20)
which may be regarded as a Riccati equationddts solution takes the form

_ aa(b)s? + a1 (b)s + ao(b) (7.27)

p= :
B2(b)s? + B1(b)s + Bo(b)
wherea; and B; are known functions of, § and its derivatives along with a function of
integration. Inview o{7.25) o is likewise rational irsand(7.14) reduces to the polynomial
form

6
> yab)s" =0. (7.28)
n=0
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It is readily shown via symbolic computatiom4PLE) that the conditiong,, = 0 con-
stitute an overdetermined system of ordinary differential equationg fomd § which is
inconsistent. Accordingly, the constra{fit12)is incompatible with the Da Rios system if
y # const.

Conclusion The above analysis shows that if the symméyl0), (7.11)s applied to
the admissible cases discussed in the preceding then the corresponding solutions indeed
constitute travelling waves and include five constants of integration. On the other hand,
the complete class of travelling wave solutions admitted by the Da Rios system likewise
contains five constants of integration. Hence, we arrive at the important conclusion that the
conditions(7.9)do not impose any constraint on that class.

The remaining assertions rely upon results originally obtained in an investigation of the
motion of an isolated vortex filament in an unbounded liquid. In that context, Da[&ios
set down particular travelling wave solutions of the sys{@r8) and discussed the motion
of the associated vortex filaments wherein the varidbtienotes time. In 1981, in the
same physical context of the so-called ‘localised induction approximd8éh’ Kida [37]
derived the class of rigid motions which are admitted by the Heisenberg spin equation.
These motions are governed B%.7) and correspond to the complete class of travelling
wave solutions given in terms of elliptic functions of the Da Rios system. Combination of
the Heisenberg spin equati¢2 3); and the constrain{7.7) produces

cty+ext=tXtg, (7.29)

which shows that the filaments exhibit the same geometry as the centerline of symmetric
elastic rodg§38]. O

Remarkably, it has been sholb,22]that the surfaces swept out by the above motions
may indeed be used in the current hydrodynamics context to fdlidtas dictated by
the constraint div = 0. In particular, nested toroidal constant pressure surfaces may be
constructed if certain constants of integration are chosen appropriately. Here, it is important
to note thats2 is required to vary with the foliation parameter (that is, the prespyre
unless the streamlines constitute helices. By construction, any such foliation corresponds
to a multiplicity of hydrodynamic flows, which is reflected by the fact that the variation
of q in the principal normal directiom is unknown. However, since the abnormaligy
is independent 0§, combination of the relationgt.5) and (5.1yeveals that the velocity
magnitudey is constant on individual constant pressure surfaces, that is

8 8
S o k_g

=0, = 7.30
és &b ( )
The latter pair may be supplemented consistently by the constraint
)
M _ . (7.31)
én

Indeed, the corresponding compatibility conditions may be shown to be satisfied on use of
the commutator relation8.4). Accordingly, the constrain{Z.31)is admissible and selects

a particular member of the above-mentioned class of flows which share the same geometry.
In fact, this particular flow constitutes a Beltrami fl¢82] in that the vorticityw = curlg
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Fig. 1. The streamlines on nested toroidal constant pressure surfaces.

of the flow is parallel tgy. Indeed, the Masotti-Emde—Bjgrgum relati@:3); yields
w=S2q. (7.32)

In the case of nested tori, the streamlines wrap around the constant pressure surfaces and
may be closed. However, in general, the constant pressure surfaces are ‘ergodic’ in that
they are covered by single streamlines. A configuration of streamlines on nested toroidal
constant pressure surfaces is displaye#iin 1

In the mathematically equivalent context of magnetohydrostatics, this configuration has
been discussed in detail jh5]. Remarkably, it coincides with that obtained by Palumbo
[40] in connection with isodynamic magnetohydrostatic equilibria.
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