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The Da Rios system under a geometric constraint:
the Gilbarg problem
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Abstract

A classical problem in hydrodynamics originally posed by Gilbarg has been recently reduced
to that of solving a solitonic Heisenberg spin equation subject to a geometric constraint. Here, this
reformulation is shown to lead to a class of solutions of the Gilbarg problem corresponding to travelling
wave solutions of a system derived by Da Rios in 1906.
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1. Introduction

A long-standing problem in hydrodynamics posed by Gilbarg[1] and subsequently
investigated by Prim[2], Howard[3], Wasserman[4] and Marris[5] has recently been
shown to be encapsulated in a nonlinear system consisting of an integrable Heisenberg spin
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equation subject to a geometric constraint[6,7]. This Heisenberg spin equation is equivalent
to the celebrated nonlinear Schrödinger (NLS) equation which, in turn, is a consequence
of the classical Da Rios system which was originally set down in 1906 in connection with
the spatial evolution of an isolated vortex filament in an unbounded inviscid liquid[8].
The hydrodynamics problem treated in[1–7], in fact, represents a generalisation of a well-
known problem posed and resolved by Hamel[9]. An alternative demonstration of what has
come to be known as Hamel’s theorem has been given in[10] via a geometric formalism
originally introduced by Marris and Passman[11] in a kinematic study of hydrodynamics.
This formalism has been exploited in magnetohydrodynamics[12] and recently within
the context of the geometry of soliton theory[13,14]. Here, it is used to address what
we term the Gilbarg problem which seeks to delimit steady hydrodynamic motions for
which the speed of the fluid flow is constant along streamlines. In view of the continuity
equation, this condition is equivalent to the purely geometric constraint divt = 0, where
t is the unit tangent to a generic streamline. It is established that for such motions, two
important geometric constraints must apply on the abnormalityΩ = t · curl t. Remarkably,
it is demonstrated that these constraints encode the ‘travelling wave’ symmetry reduction
of the Da Rios system ifΩ is assumed to be constant on the constant pressure surfaces.
This result encapsulates Hamel’s theorem corresponding toΩ = 0. The motions of Gilbarg
type which are compatible with the travelling wave reduction of the Da Rios system have
recently been delimited in[15].

It is of interest to remark that the geometric concept of abnormality and, indeed, con-
stant abnormality plays an important role in the advance made by Marris[16,17] in his
investigation of Ericksen’s problem to determine all deformations that can be sustained by
a perfectly elastic, isotropic, incompressible body subject only to surface tractions[18].
Marris’ contribution to the study of Ericksen’s problem has recently been discussed in a
survey on universal solutions in elasticity by Saccomandi[19]. Universal states in anti-plane
shear and connections with hydrodynamics have also been discussed by Knowles[20].

An analogue of Gilbarg’s problem may also be formulated in the context of magne-
tohydrodynamics. In that case, it has been shown that the integrable Pohlmeyer–Lund–
Regge model subject to a volume-preserving constraint arises as an exact reduction of the
equilibrium equations[21]. Moreover, the above-mentioned Heisenberg spin connection is
retrieved in the hydrodynamic or magnetohydrostatic limit.

2. The class of hydrodynamic motions

Here, we consider the classical system of steady hydrodynamics

div q = 0, ρ(q · ∇)q + ∇p = 0, (2.1)

whereq is the fluid velocity andp, ρ are the pressure and constant density, respectively. In
this context, the Gilbarg problem[1] may be formulated as follows:
Under what circumstances is a flow uniquely determined by its streamline pattern?
In [2], Prim established that “any flow is unique unless it has a constant velocity magni-

tude along each individual streamline.” Thus, up to a trivial scaling of the velocity magnitude
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q = |q|, the flow may be reconstructed from its streamline pattern unless

q · ∇q = 0. (2.2)

Indeed, if the latter condition holds then there exists a multiplicity of flows which exhibit
the same streamline pattern since the system(2.1), (2.2) is seen to be invariant under
(p, q) → (P(p),

√
P ′(p) q).

Gilbarg[1] and Prim[2] resolved Gilbarg’s problem for planar and axisymmetric flows,
respectively and showed that the streamlines are necessarily concentric circles or straight
lines. Wasserman[4] reformulated the governing equations in the language of tensor calculus
and reduced the rotationally symmetric case to a pair of ordinary differential equations. The
latter has been recently shown to be solvable in terms of complete elliptic integrals[15,22].
In particular, there exist configurations of nested constant pressure tori spanned by the
geodesic streamlines. However, Prim[2] states that for general spatial flows, the geometric
implications of his theorem are unknown. Marris[5] derived necessary constraints on the
geometry of the admissible flows. These ‘constant speed flows’ were the subject of the thesis
of Howard[3]. Their analysis may be extended to Prim gases[4] and, as demonstrated below,
to compressible fluids with arbitrary state law. In[6], a remarkable link was established
between the hydrodynamic system(2.1), (2.2)and the integrable Heisenberg spin equation.
It has subsequently been shown[7] that the hydrodynamics system in question is completely
encapsulated in the Heisenberg spin equation subject to a geometric constraint. The result
may be summarised as follows.

Theorem 1. Steady hydrodynamic motions withq · ∇q = 0 are governed by the purely
geometric system

∂t

∂b
= t × ∂2t

∂s2
, div t = 0, (2.3)

whereq = qt while s denotes arc length along the streamlines and b parametrises their or-
thogonal trajectories on the constant pressure surfaces. The streamlines and the orthogonal
trajectories constitute geodesics and parallels respectively thereon. The velocityq and the
pressure p are determined by integration of the compatible system

δq

δs
= 0,

δ ln q

δb
= − 1

2κ
div (κb),

δp

δs
= 0,

δp

δn
= −ρq2κ,

δp

δb
= 0, (2.4)

where

δ

δs
= t · ∇,

δ

δn
= n · ∇,

δ

δb
= b · ∇ (2.5)

designate the directional derivatives, in turn, in the tangential, principal normal and bi-
normal directions to the streamlines.

It is with the Heisenberg spin equation(2.3)1 subject to the constraint(2.3)2 that we shall
be concerned in the present paper.
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The above theorem and the subsequent analysis apply ‘mutatis mutandis’ to steady
motions of an inviscid and thermally nonconducting compressible fluid. In that context, the
governing equations are

div (ρv) = 0, ρ(v · ∇)v + ∇p = 0, v · ∇η = 0 (2.6)

augmented by an equation of state of the form

ρ = ρ(p, η), (2.7)

whereinv is the steady fluid velocity whilep, ρ andη denote the pressure, density and
specific entropy respectively. If we assume that the streamlines lie on the constant pressure
surfaces, that is

v · ∇p = 0, (2.8)

then the equation of motion(2.6)2, the equation of state(2.7) and (2.6)3 imply that

v · ∇v = 0, v · ∇ρ = 0, (2.9)

wherev = vt. Accordingly, on introduction of the canonical variable

q = qt = √
ρ v, (2.10)

the governing equations reduce to the system(2.1)ρ=1, (2.2), that is

div q = 0, (q · ∇)q + ∇p = 0, q · ∇q = 0, (2.11)

along with the isentropic condition

q · ∇η = 0. (2.12)

It is important to note that the particular motions considered here do not impose any con-
straints on the equation of state.

3. Geometric preliminaries

Here, the orthonormal basis{t, n, b} consisting of the unit tangentt, principal normaln
and binormalb to the streamlines is adopted. The directional derivatives along these unit
vectors are defined by(2.5). Following[23], we introduce the notation

θns = n · δt

δn
, θbs = b · δt

δb
(3.1)

and

Ω = t · curl t, Ωn = n · curln, Ωb = b · curlb. (3.2)

It may be established that

div t = θns + θbs, Ωb = Ω − Ωn − 2τ, curl t = Ωt + κb. (3.3)

The latter relation was originally obtained by Masotti[24] and was later rediscovered
independently by Emde[25] and Bjørgum[23]. Application of the identity curl gradφ = 0
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to a test functionφ now produces the commutator relations

δ2

δnδb
− δ2

δbδn
= −Ω

δ

δs
+ div b

δ

δn
− (κ + div n)

δ

δb
,

δ2

δbδs
− δ2

δsδb
= −Ωn

δ

δn
+ θbs

δ

δb
,

δ2

δsδn
− δ2

δnδs
= −κ

δ

δs
− θns

δ

δn
− Ωb

δ

δb
. (3.4)

The directional derivatives(2.5)of the orthonormal triad{t, n, b} may be shown to be given
by [26]

δ

δs




t

n

b


 =




0 κ 0

−κ 0 τ

0 −τ 0







t

n

b


 ,

δ

δn




t

n

b


 =




0 θns Ωb + τ

−θns 0 −div b

−(Ωb + τ) div b 0







t

n

b


 ,

δ

δb




t

n

b


 =




0 −(Ωn + τ) θbs

Ωn + τ 0 κ + div n

−θbs −(κ + div n) 0







t

n

b


 . (3.5)

On use of the commutator relations(3.4), the compatibility of the above system is
seen to impose the following set of nine conditions on the eight geometric quantities
κ, τ, Ω, Ωn, div n, div b, θns andθbs [26]:

δθns

δb
+ δ

δn
(τ + Ωn) = (κ + div n)(Ω − 2Ωn − 2τ) + div b (θbs − θns) + Ωκ,

δ

δb
(τ + Ωn − Ω) + δθbs

δn
= (κ + div n)(θns − θbs) + div b (Ω − 2Ωn − 2τ),

δ

δb
div b + δ

δn
(κ + div n) = (τ + Ωn)(τ + Ωn − Ω) − θnsθbs − τΩ − (div b)2

− (κ + div n)2

δ

δs
(τ + Ωn) + δκ

δb
= −Ωnθns − (2τ + Ωn)θbs,

δθbs

δs
= −θ2

bs + κ(κ + div n) − Ωn(τ + Ωn − Ω) + τ(τ + Ωn),

δ

δs
(κ + div n) − δτ

δb
= −Ωn div b − θbs(2κ + div n),

δκ

δn
− δθns

δs
= κ2 + θ2

ns + (τ + Ωn)(3τ + Ωn) − Ω(2τ + Ωn),
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δ

δs
(τ + Ωn − Ω) = −θns(Ωn − Ω) + κ div b + θbs(−2τ − Ωn + Ω),

δτ

δn
+ δ

δs
div b = −κ(Ωn − Ω) − θns div b + (κ + div n)(−2τ − Ωn + Ω). (3.6)

4. Intrinsic decomposition of the hydrodynamic system

The hydrodynamic system(2.1), on intrinsic decomposition, yields

δq

δs
+ q div t = 0,

δp

δs
= ρq2 div t,

δp

δn
= −ρq2κ,

δp

δb
= 0. (4.1)

Application of the commutator relations(3.4) shows that the compatibility conditions on
the pressure distribution yield

2

(
δ ln q

δn

)
div t = −δκ

δs
+ θbsκ − δ

δn
div t + 2κ div t,

2

(
δ ln q

δb

)
div t = κΩn − δ

δb
div t,

2κ

(
δ ln q

δb

)
= −div (κb) − Ω div t. (4.2)

Under the constraint(2.2), namely

δq

δs
= 0, (4.3)

the system(4.1)1, (4.2)reduces to the purely geometric set of equations

div t = 0, Ωn = 0,
δκ

δs
= θbsκ (4.4)

together with

δq

δb
= − q

2κ
div (κb) (4.5)

provided thatκ �= 0. Importantly, the variation of the speedq in the direction of the principal
normal remains arbitrary. Accordingly, as discussed inSection 2, constant speed flows are
not completely determined by their streamline geometry.

On application of the commutator relation(3.4)2, the compatibility of the relations(4.3)
and (4.5)is readily shown to lead to the requirement

δ

δs
div (κb) = 0. (4.6)

However, the latter is a consequence of the compatibility conditions(3.6). Indeed, elimina-
tion of δτ/δn between(3.6)1 and (3.6)9 results in

δ

δs
div b + div (θbsb) = 0. (4.7)
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Insertion ofθbs as given by(4.4)3 and use of the commutator relation(3.4)2 then produce
(4.6).

5. Constraints on the abnormalityΩ

The geometric relations(3.6) and (4.4)encapsulate two important constraints on the
abnormalityΩ. Firstly, elimination ofδτ/δs from (3.6)4,8 leads to

δΩ

δs
+ Ω div t + div (κb) = 0, (5.1)

which is nothing but the identity div curlt = 0, where curlt is given by the Masotti–Emde–
Bjørgum relation(3.3)3. In view of (4.4)1 and (4.6), the relation(5.1) implies that

δ2Ω

δs2
= 0. (5.2)

Secondly, addition of the relations(3.6)2,6 produces

δΩ

δb
= δθbs

δn
+ δ

δs
(κ + div n) + 3θbs(κ + div n) + θbsκ + (2τ − Ω)div b. (5.3)

The commutator relation(3.4)3 yields

δθbs

δn
= δ2 ln κ

δnδs
= δ2 ln κ

δsδn
+ κ

δ ln κ

δs
− θbs

δ ln κ

δn
+ Ωb

δ ln κ

δb
, (5.4)

wherein, in view of(3.6)4,7, the directional derivativesδκ/δb andδκ/δn may be replaced
by

δκ

δb
= −δτ

δs
− 2τθbs,

δκ

δn
= −δθbs

δs
+ κ2 + θ2

bs + 3τ2 − 2τΩ. (5.5)

Moreover, on solving(3.6)5 and (3.6)8 for κ + div n and divb, respectively, one obtains

κ + div n = 1

κ

(
δθbs

δs
+ θ2

bs − τ2
)

, div b = 1

κ

(
δτ

δs
− δΩ

δs
+ 2τθbs

)
. (5.6)

Reduction of(5.3)by means of(5.4)–(5.6)now yields

κ
δΩ

δb
= δ

δs

(
4τ2 + 4θ2

bs + κ2 − 4τΩ + Ω2

2

)
. (5.7)

6. The geometry of the constant pressure surfaces: a constrained Da Rios system

The equation of motion(2.1)2 together with the constraint(2.2)shows that

∇p = −ρq2κn, (6.1)

whence the principal normal to the streamlines is parallel to the normal to the constant
pressure surfaces. Accordingly, the streamlines, namely thes-lines, are geodesics on the
constant pressure surfaces while their orthogonal trajectories, theb-lines, are necessarily
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parallels thereon. Indeed, the vanishing abnormality conditionΩn provides a necessary
and sufficient condition for surfaces to exist which contain the trajectories of thet andb

vector fields. If theses-lines andb-lines are now taken as parametric curves on the constant
pressure surfaces then their metric adopts the geodesic form

I = ds2 + h2 db2, (6.2)

where

∇p=const. = t
δ

δs
+ b

δ

δb
= t

∂

∂s
+ b

h

∂

∂b
, (6.3)

and

θbs = ∂ ln h

∂s
. (6.4)

The relations(3.6)4,5,6 are nothing but the Gauß–Mainardi–Codazzi equations for the con-
stant pressure surfaces and become

∂κ

∂b
= −1

h

∂

∂s
(h2τ),

∂τ

∂b
= ∂

∂s
[h(κ + div n)] + κ

∂h

∂s
,

∂2h

∂s2
= [κ(κ + div n) + τ2]h. (6.5)

However, the relation(4.4)3 shows that

h = λκ, (6.6)

whereδλ/δs = 0. On transformingλb → b, the directional derivatives in(6.3)become

δ

δs
= ∂

∂s
,

δ

δb
= 1

κ

∂

∂b
(6.7)

so that, on elimination ofκ + div n, Eqs. (5.2), (5.7) and (6.5)are seen to represent a system
of two-dimensional differential equations which prevail on any individual constant pressure
surface. Remarkably, the pair(6.5)1,2 constitutes the celebrated Da Rios system[8,27,28].1

This gives rise to the following key observation.

Theorem 2. In steady hydrodynamic motions withδq/δs = 0, the curvature and torsion
of the streamlines obey the Da Rios system

∂κ

∂b
= −2

∂κ

∂s
τ − κ

∂τ

∂s
,

∂τ

∂b
= ∂

∂s

(
1

κ

∂2κ

∂s2
+ κ2

2
− τ2

)
, (6.8)

1 L.S. Da Rios engaged in a long-standing investigation of the motion of three-dimensional vortex filaments
starting in 1906 under the guidance of T. Levi-Civita at the University of Padua. He originated the now celebrated
localised induction approximation (LIA) to be re-discovered more than 50 years later. An excellent account of the
contributions of Da Rios and Levi-Civita to the study of vortex dynamics has been given by Ricca[29].
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where s denotes arc length along the streamlines and b parametrises their orthogonal
trajectories on the constant pressure surfaces. The abnormalityΩ is subject to the two
necessary constraints(5.2)and(5.7), that is

∂2Ω

∂s2
= 0,

∂Ω

∂b
= ∂

∂s

[
4τ2 + 4

(
1

κ

∂κ

∂s

)2

+ κ2 − 4τΩ + Ω2

2

]
. (6.9)

The Da Rios system is equivalent to the Heisenberg spin equation(2.3)1. In general, the two
conditions(6.9)on the abnormalityΩ are not compatible and impose constraints on the Da
Rios system(6.8). It is with these constraints that we shall be concerned in the remainder
of this paper.

7. A class of solutions of the Gilbarg problem

Hamel[9], in 1937, undertook a detailed study of irrotational constant speed flows. Thus,
he was concerned with the existence of solutions of the hydrodynamic system(2.1), (2.2)
subject to the additional constraint

curlq = 0. (7.1)

Since, in this case,Ω = 0 and divt = 0, there exist minimal surfaces[30] which are or-
thogonal to the streamlines. Hamel employed the classical Weierstrass representation[31]
of minimal surfaces to show that the streamlines of such flows can only be straight lines or
helices mounted on concentric circular cylinders. In[10], Marris presented an alternative
demonstration of Hamel’s theorem. This involved establishing that the geometric systems
(3.6), (4.4)subject to(7.1)are compatible if and only ifκ = 0 or δκ/δs = δτ/δs = 0. Prim
[32] showed that the admissible streamline geometries of constant speed flows which are
complex-lamellar, that is

Ω = 0, (7.2)

coincide with those of irrotational constant speed flows. Hamel’s theorem may therefore
be called upon to deduce that the streamlines of complex-lamellar constant speed flows are
likewise either straight lines or circular helices.

Here, Prim’s (and ‘a fortiori’ Hamel’s) condition is relaxed. It is demanded that the
abnormalityΩ be constant on individual constant pressure surfaces. This is motivated by
the fact that, even though the geometric meaning of the condition(7.2) is evident, from
the point of Lie point symmetries, it is not an invariant condition. In this connection, it is
noted that, in principle, one should be able to bring the overdetermined system(6.8), (6.9)
into involutive form in the sense of Cartan[33] and K̈ahler[34] by adding all necessary
compatibility conditions. However, it turns out that, in the case of a generic abnormality, the
practical implementation of this statement by means of a computer algebra package such
asrif [35] appears to be obstructed by the high level of computational complexity.

The following theorem constitutes the key result of the present paper.
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Theorem 3. In steady hydrodynamic motions with

δq

δs
= 0,

δΩ

δs
= 0,

δΩ

δb
= 0, (7.3)

the curvatureκ and torsionτ of the streamlines are necessarily‘ travelling wave’ solutions

κ = κ(s + cb), τ = τ(s + cb) (7.4)

of the Da Rios system(6.8). The solution of the constrained Da Rios system(6.8), (6.9)is
given by

κ = √
ρ, τ = Ω

2
+ α + β

ρ
, (7.5)

wherec = −Ω − 2α andρ is the elliptic function defined by

ρ′2 + ρ3 − 4γρ2 + 4(αρ + β)2 = 0. (7.6)

Here, the quantitiesα, β, γ and δ are independent of s and b. The streamlines on any
individual constant pressure surface are identical up to Euclidean motions. The latter are
generated by the compatible constraint

∂t

∂b
= c

∂t

∂s
+ c × t (7.7)

on the Heisenberg spin equation(2.3)1, where the vectorc is likewise constant on any
individual constant pressure surface. The streamlines have the shape of(the centreline of)
symmetric elastic rods.

Proof. The Gilbarg problem of delimiting hydrodynamic motions subject to the constraint
(2.2)has been seen to reduce to the problem of solving the solitonic Da Rios system

κb = −2κsτ − κτs, τb =
(

κss

κ
+ κ2

2
− τ2

)
s

(7.8)

subject to the constraint divt = 0. Here, subscripts designate partial derivatives. Our starting
point is the observation that the Da Rios system and the conditions

Ωss = 0, Ωb =
[
4τ2 + 4

(κs

κ

)2 + κ2 − 4τΩ + Ω2

2

]
s

(7.9)

on the abnormality of thet vector field admit common Lie point symmetries. Thus, the
important invariance[39]

∂b → ∂b − 2λ∂s, τ → τ + λ (7.10)

of the Da Rios system(7.8) which is known to inject the constant ‘spectral’ parameterλ

into the associated Lax representation extends to the system(7.9) if it is supplemented by

Ω → Ω + 2λ. (7.11)
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Hence, ifΩ is constant on individual constant pressure surfaces then it may be removed by
means of the above symmetry and the constraint on the Da Rios system becomes

4τ2 + 4
(κs

κ

)2 + κ2 = 4γ(b), (7.12)

whereγ constitutes an arbitrary function of integration. However, it is emphasised that once
a solution of the Da Rios system and the constraint(7.12)has been found,Ω must be re-
trieved since the above invariance does not necessarily extend to the complete hydrodynamic
system. In particular,Ω may depend on the pressurep.
The caseκs = 0: If the curvatureκ is constant along the streamlines then the constraint

(7.12)implies that the torsionτ is likewise independent ofs. Accordingly, the streamlines
constitute helices and the Da Rios equations(7.8) show thatκ andτ are constant on each
individual constant pressure surface. It is well-known[5] that these helices are mounted on
concentric circular cylinders.
The caseτ = 0: If the streamlines are planar then the Da Rios equation(7.8)1 implies

thatκ is independent ofb. Accordingly,γ is constant and the remaining Da Rios equation
(7.8)2 is satisfied modulo the constraint(7.12) which may be solved in terms of elliptic
functions.
The caseγ = const.: Here, we investigate under what circumstances the constraint(7.12)

is compatible with the Da Rios system ifγ is independent ofb. In terms of

ρ = κ2, (7.13)

the constraint(7.12)may be written as

τ = σ

ρ
, σ2 = γρ2 − 1

4
ρ3 − 1

4
ρ2

s , (7.14)

and the Da Rios equations become

ρb = −2(ρτ)s, τb =
(

1

2

ρss

ρ
− 1

4

ρ2
s

ρ2
+ ρ

2
− τ2

)
s

. (7.15)

Insertion ofτ as given by(7.14)1 into (7.15)1 yields

ρb = −2σs, (7.16)

while evaluation of(7.15)2 produces(
σs

ρs

)
s

= 0. (7.17)

In the derivation of the latter, derivatives ofρ in binormal direction have been removed by
means of(7.16). Accordingly,σ andρ are related by

σ = α(b)ρ + β(b) (7.18)

so that(7.16)becomes

ρb = −2αρs. (7.19)
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The latter is compatible with(7.14)2, that is

ρ2
s + ρ3 − 4γρ2 + 4(αρ + β)2 = 0, (7.20)

if and only if

αb = βb = 0. (7.21)

Thus, it has been demonstrated that the conditionγ = const. leads to travelling wave solu-
tions of the Da Rios system which may be expressed in terms of elliptic functions by virtue
of (7.20).
The caseγ �= const.: Here, it will be shown that the constraint(7.12) is incompatible

with the Da Rios system ifγb �= 0. As in the preceding, we introduce the quantitiesρ and
σ so that the relations(7.13)–(7.16)are still valid. However, evaluation of the Da Rios
equation(7.15)2 now yields

γb + (4γ − ρ)

(
σs

ρs

)
s

= 0. (7.22)

Subsequent integration produces

(4γ − ρ)
σs

ρs

+ σ + γbs = δ(b), (7.23)

whereδ constitutes a function of integration. Accordingly, the derivativesρs, ρb andσs may
be expressed in terms ofρ, σ (along withγ, δ ands) by means of(7.14)2, (7.16) and (7.23).
Hence, the compatibility conditionρsb = ρbs delivers

σb = 2γbσ

4γ − ρ
− 2ρs

(σ + γbs)(σ + γbs − 2δ) + δ2

(4γ − ρ)2
(7.24)

so that the compatibility conditionσsb = σbs leads to

4γbσ + (γbbs − δb)(ρ − 4γ) + 8γb(γbs − δ) = 0. (7.25)

In order for a solution to exist, this must be an admissible constraint on the system(7.14)2,
(7.16), (7.23), (7.24). On differentiation with respect tos and elimination ofσs andσ by
means of(7.23) and (7.25), respectively, we are led to the necessary condition

ρs = (4γ − ρ)[γbb(4γ − ρ) − 8γ2
b ]

4γb(γbs − δ)
, (7.26)

which may be regarded as a Riccati equation forρ. Its solution takes the form

ρ = α2(b)s2 + α1(b)s + α0(b)

β2(b)s2 + β1(b)s + β0(b)
, (7.27)

whereαi andβi are known functions ofγ, δ and its derivatives along with a function of
integration. In view of(7.25),σ is likewise rational insand(7.14)2 reduces to the polynomial
form

6∑
n=0

γn(b)sn = 0. (7.28)
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It is readily shown via symbolic computation (maple) that the conditionsγn = 0 con-
stitute an overdetermined system of ordinary differential equations forγ andδ which is
inconsistent. Accordingly, the constraint(7.12)is incompatible with the Da Rios system if
γ �= const.
Conclusion: The above analysis shows that if the symmetry(7.10), (7.11)is applied to

the admissible cases discussed in the preceding then the corresponding solutions indeed
constitute travelling waves and include five constants of integration. On the other hand,
the complete class of travelling wave solutions admitted by the Da Rios system likewise
contains five constants of integration. Hence, we arrive at the important conclusion that the
conditions(7.9)do not impose any constraint on that class.

The remaining assertions rely upon results originally obtained in an investigation of the
motion of an isolated vortex filament in an unbounded liquid. In that context, Da Rios[8]
set down particular travelling wave solutions of the system(7.8)and discussed the motion
of the associated vortex filaments wherein the variableb denotes time. In 1981, in the
same physical context of the so-called ‘localised induction approximation’[36], Kida [37]
derived the class of rigid motions which are admitted by the Heisenberg spin equation.
These motions are governed by(7.7) and correspond to the complete class of travelling
wave solutions given in terms of elliptic functions of the Da Rios system. Combination of
the Heisenberg spin equation(2.3)1 and the constraint(7.7)produces

cts + c × t = t × tss, (7.29)

which shows that the filaments exhibit the same geometry as the centerline of symmetric
elastic rods[38]. �

Remarkably, it has been shown[15,22]that the surfaces swept out by the above motions
may indeed be used in the current hydrodynamics context to foliateR

3 as dictated by
the constraint divt = 0. In particular, nested toroidal constant pressure surfaces may be
constructed if certain constants of integration are chosen appropriately. Here, it is important
to note thatΩ is required to vary with the foliation parameter (that is, the pressurep)
unless the streamlines constitute helices. By construction, any such foliation corresponds
to a multiplicity of hydrodynamic flows, which is reflected by the fact that the variation
of q in the principal normal directionn is unknown. However, since the abnormalityΩ

is independent ofs, combination of the relations(4.5) and (5.1)reveals that the velocity
magnitudeq is constant on individual constant pressure surfaces, that is

δq

δs
= 0,

δq

δb
= 0. (7.30)

The latter pair may be supplemented consistently by the constraint

δq

δn
= κq. (7.31)

Indeed, the corresponding compatibility conditions may be shown to be satisfied on use of
the commutator relations(3.4). Accordingly, the constraint(7.31)is admissible and selects
a particular member of the above-mentioned class of flows which share the same geometry.
In fact, this particular flow constitutes a Beltrami flow[32] in that the vorticityω = curlq
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Fig. 1. The streamlines on nested toroidal constant pressure surfaces.

of the flow is parallel toq. Indeed, the Masotti–Emde–Bjørgum relation(3.3)3 yields

ω = Ωq. (7.32)

In the case of nested tori, the streamlines wrap around the constant pressure surfaces and
may be closed. However, in general, the constant pressure surfaces are ‘ergodic’ in that
they are covered by single streamlines. A configuration of streamlines on nested toroidal
constant pressure surfaces is displayed inFig. 1.

In the mathematically equivalent context of magnetohydrostatics, this configuration has
been discussed in detail in[15]. Remarkably, it coincides with that obtained by Palumbo
[40] in connection with isodynamic magnetohydrostatic equilibria.
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Appl. Math. 26 (1998) 267–287.

[14] W.K. Schief, C. Rogers, Binormal motion of curves of constant curvature and torsion. Generation of soliton
surfaces, Proc. R. Soc. London A 455 (1999) 3163–3188.

[15] W.K. Schief, Nested toroidal flux surfaces in magnetohydrostatics. Generation via soliton theory, J. Plasma
Phys. 69 (2003) 465–484.

[16] A.W. Marris, Universal deformations in incompressible isotropic elastic materials, J. Elasticity 5 (1975)
111–128.

[17] A.W. Marris, Two new theorems on Ericksen’s problem, Arch. Rat. Mech. Anal. 79 (1982) 131–173.
[18] J. Ericksen, Deformations possible in every isotropic, incompressible, perfectly elastic body, Z. angew. Math.

Phys. 5 (1954) 466–489.
[19] G. Saccomandi, Universal results in finite elasticity, in: Y.B. Fu, R.W. Ogden (Eds.), Nonlinear Elasticity:

Theory and Applications, London Mathematical Society Lecture Notes Series, vol. 283, Cambridge Univer-
sity Press, 2001, pp. 97 130.

[20] J.K. Knowles, Universal states of finite anti-plane shear: Ericksen’s problem in miniature, Am. Math. Monthly
86 (1979) 109–113.

[21] W.K. Schief, Hidden integrability in ideal magnetohydrodynamics. The Pohlmeyer–Lund–Regge model,
Phys. Plasmas 10 (2003) 2677–2685.

[22] G. Grice, W.K. Schief, Constant speed flows and the nonlinear Schrödinger equation, in preparation.
[23] O. Bjørgum, On Beltrami vector fields and flows, Part I, Universitet I. Bergen, Arbok Naturvitenskapelig

rekke n-1 (1951).
[24] A. Masotti, Decomposizione intrinseca del vortice a sue applicazioni, Instituto Lombardo di Scienze a Lettere

Rendiconti (2) 60 (1927) 869–874.
[25] F. Emde, Der Einfluß der Feldlinien auf Divergenz und Rotor, Archiv für Elektrotechnik 39 (1948) 2–8.
[26] A.W. Marris, A.W.C.C. Wang, Solenoidal screw fields of constant magnitude, Arch. Rat. Mech. Anal. 39

(1970) 227–244.
[27] T. Levi-Civita, Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi, Annali R. Scuola Norm. Sup. Pisa,

Zanichelli, Bologna, 1932.
[28] R.L. Ricca, Rediscovery of Da Rios equation, Nature 352 (1991) 561–562.
[29] R.L. Ricca, The contribution of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament

dynamics, Fluid Dyn. Res. 18 (1996) 245–268.
[30] C.E. Weatherburn, Differential Geometry of Three Dimensions, vol. I, Cambridge University Press, 1927;

C.E. Weatherburn, Differential Geometry of Three Dimensions, vol. II, Cambridge University Press, 1930.
[31] L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York, 1960.
[32] R.C. Prim, Steady rotational flow of ideal gases, Arch. Rat. Mech. Anal. 1 (1952) 425–497.
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